Watson 口腔 溃疡

想要增加口腔中的湿度,提高口腔分泌唾液的能力很重要,经常咀嚼的口腔分泌唾液的能力也会更强,因此在吃饭的时候不妨多咀嚼几下,或者时不时嚼一些口香糖也是不错的做法,但要注意口香糖嚼太多反而会损害牙齿。多嚼嚼口香糖,或者使用口气清新剂,这是生活中最最简单去除口臭的方法。

2、多喝水

多喝水可以补充人体丢失的体液,以免口腔干燥造成细菌大量繁衍,从而形成口臭。水能使口腔处于细菌密度最低的环境,喝水对身体有很多好处,预防口臭是其中之一。

3、无糖酸奶

无糖酸奶能降低细菌生成。健康研究表明,每天坚持喝无糖酸奶,可以降低口腔中硫化氢的含量,而硫化氢正是带来口气的“首要通缉犯”。此外,它还能促进胃肠道中的有益细菌产生,防止食物停留胃肠中过久,促进排除宿便,净化口气。

重磅综述:猪作为生物医学模型的重要性

Watson 口腔 溃疡

BioArt生物艺术

科研等 2 个话题下的优秀答主

10 人赞同了该文章

撰文 | Wayne
责编 | 翊竑

猪作为研究人类发育过程、先天性疾病和病原体反应机制的生物医学模型,除了作为异种器官供体和疫苗及药物设计的工具外,还有很大的潜力。猪与人类在解剖学尺寸和结构、生理学、免疫学以及基因组等方面的相似性增强了它们作为人类模型的潜力。因此,当务之急是在更接近人类的动物模型(比如:猪)中进行相关和可重复的研究。

近日,美国农业部Joan K. Lunney等研究人员在Science Translational Medicine杂志合作发表了题为Importance of the pig as a human biomedical model的综述论文,该文章系统性总结了猪作为人类研究模型的现状,并强调了其未来的应用前景。

Watson 口腔 溃疡
Watson 口腔 溃疡
Watson 口腔 溃疡
Watson 口腔 溃疡
Watson 口腔 溃疡

图. 猪模型可广泛用于人类生理学和疾病研究。
总结
这篇综述总结和更新了猪作为人类生物医学模型的优势、最新应用和巨大潜力(如上图)。其应用包括心脏和生殖研究、生长和发育、疾病机制和药物测试、疫苗设计和异种移植。最近在猪的基因工程和人源化选择方面的进展进一步丰富了猪模型的种类,随着对猪的基因组和免疫系统认知的增加,将会提高这一物种模型的潜力。与小动物模型相比,使用猪作为生物医学模型仍会有一些限制。猪需要更多的空间、饲料和特定的管理方案,而且更昂贵。尽管有这些限制,猪的模型应该被更多地接纳为人类疾病和转化医学研究的首选模型。基础科学和应用技术的持续发展将加强利用猪进行的研究。
原文链接:
https://www.science.org/doi/10.1126/scitranslmed.abd5758



参考文献

1. J. K. Lunney, Advances inswine biomedical model genomics. Intl. J. Biol. Sci. 3, 179–184 (2007).

2. F. Meurens, A. Summerfield, H. Nauwynck, L. Saif, V. Gerdts, The pig: A model for human infectious diseases. Trends Microbiol. 20, 50–57 (2012).

3. M. Swindle, A. Makin, A. Herron, F. Clubb Jr., K. Frazier, Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).

4. V. Gerdts, H. Wilson, F. Meurens, S. VanDrunen, D. Wilson, S. Walker, C. Wheler, H. Townsend, A. Potter, Large animal models for vaccine development and testing. ILAR J. 56, 53–62 (2015).

5. K. Gutierrez, N. Dicks, W. G. Glanzner, L. B. Agellon, V. Bordignon, Efficacy of the porcine species in biomedical research. Front. Genet. 6, 293 (2015).

6. N. Klymiuk, F. Seeliger, M. Bohlooly-Y, A. Blutke, D. Rudmann, E. Wolf, Tailored pig models for preclinical efficacy and safety testing of targeted therapies. Toxicol. Pathol. 44, 346–357 (2016).

7. R. Pabst, The pig as a model for immunology research. Cell Tissue Res. 380, 287–304 (2020).

8. P. Camacho, H. Fan, Z. Liu, J.-Q. He, Large mammalian animal models of heart disease. J. Cardiovas. Dev. Dis. 3, 30 (2016).

9. W. Schelstraete, M. Devreese, S. Croubels, Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem. Toxicol. 137, 111140 (2020).

10. N. C. Ganderup, W. Harvey, J. T. Mortensen, W. Harrouk, The minipig as nonrodent species in toxicology—Where are we now? Int. J. Toxicol. 31, 507–528 (2012).

11. J. Seok, S. Warren, A. Cuenca, M. Mindrinos, H. Baker, W. Xu, D. Richards, G. McDonald-Smith, H. Gao, L. Hennessy, C. C. Finnerty, C. M. López, S. Honari, E. E. Moore, J. P. Minei, J. Cuschieri, P. E. Bankey, J. L. Johnson, J. Sperry, A. B. Nathens, T. R. Billiar, M. A. West, M. G. Jeschke, M. B. Klein, R. L. Gamelli, N. S. Gibran, B. H. Brownstein, C. Miller-Graziano, S. E. Calvano, P. H. Mason, J. P. Cobb, L. G. Rahme, S. F. Lowry, R. V. Maier, L. L. Moldawer, D. N. Herndon, R. W. Davis, W. Xiao, R. G. Tompkins; Inflammation, and Host Response to Injury, Large Scale Collaborative Research Program, Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. U.S.A. 110, 3507–3512 (2013).

12. A. Blutke, R. Wanke, Sampling strategies and processing of biobank tissue samples from porcine biomedical models. J. Vis. Exp. 133, 57276 (2018).

13. C. S. Rogers, Genetically engineered livestock for biomedical models. Transgenic Res. 25, 345–359 (2016).

14. H. Tang, M. Mayersohn, Porcine prediction of pharmacokinetic parameters in people: A pig in a poke? Drug Metab. Dispos. 46, 1712–1724 (2018).

15. S. Chiappalupi, L. Salvadori, G. Luca, F. Riuzzi, R. Calafiore, R. Donato, G. Sorci, Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy? Cell Prolif. 52, e12599 (2019).

16. H. L. Wilson, M. R. Obradovic, Evidence for a common mucosal immune system in the pig. Mol. Immunol. 66, 22–34 (2015).

17. M. A. M. Groenen, A. L. Archibald, H. Uenishi, C. K. Tuggle, Y. Takeuchi, M. F. Rothschild, C. Rogel-Gaillard, C. Park, D. Milan, H.-J. Megens, S. Li, D. M. Larkin, H. Kim, L. A. F. Frantz, M. Caccamo, H. Ahn, B. L. Aken, A. Anselmo, C. Anthon, L. Auvil, B. Badaoui, C. W. Beattie, C. Bendixen, D. Berman, F. Blecha, J. Blomberg, L. Bolund, M. Bosse, S. Botti, Z. Bujie, M. Bystrom, B. Capitanu, D. Carvalho-Silva, P. Chardon, C. Chen, R. Cheng, S.-H. Choi, W. Chow, R. C. Clark, C. Clee, R. P. M. A. Crooijmans, H. D. Dawson, P. Dehais, F. De Sapio, B. Dibbits, N. Drou, Z.-Q. Du, K. Eversole, J. Fadista, S. Fairley, T. Faraut, G. J. Faulkner, K. E. Fowler, M. Fredholm, E. Fritz, J. G. R. Gilbert, E. Giuffra, J. Gorodkin, D. K. Griffin, J. L. Harrow, A. Hayward, K. Howe, Z.-L. Hu, S. J. Humphray, T. Hunt, H. Hornshøj, J.-T. Jeon, P. Jern, M. Jones, J. Jurka, H. Kanamori, R. Kapetanovic, J. Kim, J.-H. Kim, K.-W. Kim, T.-H. Kim, G. Larson, K. Lee, K.-T. Lee, R. Leggett, H. A. Lewin, Y. Li, W. Liu, J. E. Loveland, Y. Lu, J. K. Lunney, J. Ma, O. Madsen, K. Mann, L. Matthews, S. M. Laren, T. Morozumi, M. P. Murtaugh, J. Narayan, D. T. Nguyen, P. Ni, S.-J. Oh, S. Onteru, F. Panitz, E.-W. Park, H.-S. Park, G. Pascal, Y. Paudel, M. Perez-Enciso, R. Ramirez-Gonzalez, J. M. Reecy, S. Rodriguez-Zas, G. A. Rohrer, L. Rund, Y. Sang, K. Schachtschneider, J. G. Schraiber, J. Schwartz, L. Scobie, C. Scott, S. Searle, B. Servin, B. R. Southey, G. Sperber, P. Stadler, J. V. Sweedler, H. Tafer, B. Thomsen, R. Wali, J. Wang, J. Wang, S. White, X. Xu, M. Yerle, G. Zhang, J. Zhang, J. Zhang, S. Zhao, J. Rogers, C. Churcher, L. B. Schook, Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).

18. A. Warr, N. Affara, B. Aken, H. Beiki, D. M. Bickhart, K. Billis, W. Chow, L. Eory, H. A. Finlayson, P. Flicek, C. G. Girón, D. K. Griffin, R. Hall, G. Hannum, T. Hourlier, K. Howe, D. A. Hume, O. Izuogu, K. Kim, S. Koren, H. Liu, N. Manchanda, F. J. Martin, D. J. Nonneman, R. E. O'Connor, A. M. Phillippy, G. A. Rohrer, B. D. Rosen, L. A. Rund, C. A. Sargent, L. B. Schook, S. G. Schroeder, A. S. Schwartz, B. M. Skinner, R. Talbot, E. Tseng, C. K. Tuggle, M. Watson, T. P. L. Smith, A. L. Archibald, An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience 9, giaa051 (2020).

19. H. D. Dawson, J. E. Loveland, G. Pascal, J. Gilbert, H. Uenishi, K. M. Mann, Y. Sang, J. Zhang, D. Carvalho-Silva, T. Hunt, M. Hardy, Z. Hu, S.-H. Zhao, A. Anselmo, H. Shinkai, C. Chen, B. Badaoui, D. Berman, C. Amid, M. Kay, D. Lloyd, C. Snow, T. Morozumi, R. P.-Y. Cheng, M. Bystrom, R. Kapetanovic, J. C. Schwartz, R. Kataria, M. Astley, E. Fritz, C. Steward, M. Thomas, L. Wilming, D. Toki, A. L. Archibald, B. Bed’Hom, D. Beraldi, T.-H. Huang, T. Ait-Ali, F. Blecha, S. Botti, T. C. Freeman, E. Giuffra, D. A. Hume, J. K. Lunney, M. P. Murtaugh, J. M. Reecy, J. L. Harrow, C. Rogel-Gaillard, C. K. Tuggle, Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332 (2013).

20. H. D. Dawson, J. K. Lunney, Porcine cluster of differentiation (CD) markers 2018 update. Res. Vet. Sci. 118, 199–246 (2018).

21. H. D. Dawson, Y. Sang, J. K. Lunney, Porcine cytokines, chemokines and growth factors: 2019 update. Res. Vet. Sci. 131, 266–300 (2020).

22. R. E. Hammer, V. G. Pursel, C. E. Rexroad Jr., R. J. Wall, D. J. Bolt, K. M. Ebert, R. D. Palmiter, R. L. Brinster, Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683 (1985).

23. C. Perleberg, A. Kind, A. Schnieke, Genetically engineered pigs as models for human disease. Dis. Model Mech. 11, dmm030783 (2018).

24. M. Dmochewitz, E. Wolf, Genetic engineering of pigs for the creation of translational models of human pathologies. Anim. Front. 5, 50–56 (2015).

25. J. Betthauser, J. Betthauser, E. Forsberg, M. Augenstein, L. Childs, K. Eilertsen, J. Enos, T. Forsythe, P. Golueke, G. Jurgella, R. Koppang, T. Lesmeister, K. Mallon, G. Mell, P. Misica, M. Pace, M. Pfister-Genskow, N. Strelchenko, G. Voelker, S. Watt, S. Thompson, M. Bishop, Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–1059 (2000).

26. A. Onishi, M. Iwamoto, T. Akita, S. Mikawa, K. Takeda, T. Awata, H. Hanada, A. C. Perry, Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190 (2000).

27. I. A. Polejaeva, S. H. Chen, T. D. Vaught, R. L. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D. L. Ayares, A. Colman, K. H. S. Campbell, Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90 (2000).

28. L. Lai, D. Kolber-Simonds, K. W. Park, H. T. Cheong, J. L. Greenstein, G. S. Im, M. Samuel, A. Bonk, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter, R. J. Hawley, R. S. Prather, Production of -1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092 (2002).

29. Y. Dai, T. D. Vaught, J. Boone, S. H. Chen, C. J. Phelps, S. Ball, J. A. Monahan, P. M. Jobst, K. J. McCreath, A. E. Lamborn, J. L. Cowell-Lucero, K. D. Wells, A. Colman, I. A. Polejaeva, D. L. Ayares, Targeted disruption of the 1, 3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255 (2002).

30. T. Hai, F. Teng, R. Guo, W. Li, Q. Zhou, One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375 (2014).

31. K. M. Whitworth, K. Lee, J. A. Benne, B. P. Beaton, L. D. Spate, S. L. Murphy, M. S. Samuel, J. Mao, C. O'Gorman, E. M. Walters, C. N. Murphy, J. Driver, A. Mileham, D. McLaren, K. D. Wells, R. S. Prather, Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol. Reprod. 91, 78 (2014).

32. H. Lin, Q. Deng, L. Li, L. Shi, Application and development of CRISPR/Cas9 technology in pig research, in Gene Editing—Technologies and Applications (IntechOpen, 2019).

33. B. K. Redel, K. J. Tessanne, L. D. Spate, C. N. Murphy, R. S. Prather, Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reprod. Fertil. Dev. 27, 655–666 (2015).

34. B. K. Redel, L. D. Spate, R. S. Prather, In vitro maturation, fertilization, and culture of pig oocytes and embryos. Methods Mol. Biol. 2006, 93–103 (2019).

35. C. J. Phelps, C. Koike, T. D. Vaught, J. Boone, K. D. Wells, S.-H. Chen, S. Ball, S. M. Specht, I. A. Polejaeva, J. A. Monahan, P. M. Jobst, S. B. Sharma, A. E. Lamborn, A. S. Garst, M. Moore, A. J. Demetris, W. A. Rudert, R. Bottino, S. Bertera, M. Trucco, T. E. Starzl, Y. Dai, D. L. Ayares, Production of 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414 (2003).

36. V. Vrolyk, M. J. Desmarais, D. Lambert, J. Haruna, M. O. Benoit-Biancamano, Neonatal and juvenile ocular development in göttingen minipigs and domestic pigs: A histomorphological and immunohistochemical study. Vet. Pathol. 57, 889–914 (2020).

37. S. K. Subasinghe, K. C. Ogbuehi, L. Mitchell, G. J. Dias, Animal model with structural similarity to human corneal collagen fibrillar arrangement. Anat. Sci. Int. 96, 286–293 (2021).

38. M. Crespo-Moral, L. García-Posadas, A. López-García, Y. Diebold, Histological and immunohistochemical characterization of the porcine ocular surface. PLOS ONE 15, e0227732 (2020).

39. I. Sanchez, R. Martin, F. Ussa, I. Fernandez-Bueno, The parameters of the porcine eyeball. Graefes Arch. Clin. Exp. Ophthalmol. 249, 475–482 (2011).

40. S. Middleton, Porcine ophthalmology. Vet. Clin. North Am. Food Anim. Pract. 26, 557–572 (2010).

41. M. P. Czajka, T. J. Cummings, B. W. McCuen II, C. A. Toth, H. Nguyen, S. Fekrat, Radial optic neurotomy in the porcine eye without retinal vein occlusion. Arch. Ophthalmol. 122, 1185–1189 (2004).

42. B. Jonckx, M. Porcu, A. Candi, I. Etienne, P. Barbeaux, J. H. M. Feyen, Assessment of ocriplasmin effects on the vitreoretinal compartment in porcine and human model systems. J. Ophthalmol. 2017, 2060765 (2017).

43. C. Jumelle, E. S. Sani, Y. Taketani, A. Yung, F. Gantin, S. K. Chauhan, N. Annabi, R. Dana, Growth factor-eluting hydrogels for management of corneal defects. Mater. Sci. Eng. C. 120, 111790 (2021).

44. N. Lassota, J. F. Kiilgaard, J. U. Prause, M. la Cour, Correlation between clinical and histological features in a pig model of choroidal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 244, 394–398 (2006).

45. S. Regal, D. O'Connor, P. Brige, R. Delattre, T. Djenizian, M. Ramuz, Determination of optical parameters of the porcine eye and development of a simulated model. J. Biophotonics 12, e201800398 (2019).

46. T. G. Van Kooten, S. Koopmans, T. Terwee, S. Norrby, J. M. M. Hooymans, H. J. Busscher, Development of an accommodating intra-ocular lens—In vitro prevention of re-growth of pig and rabbit lens capsule epithelial cells. Biomaterials 27, 5554–5560 (2006).

47. F. Menduni, L. N. Davies, D. Madrid-Costa, A. Fratini, J. S. Wolffsohn, Characterisation of the porcine eyeball as an in-vitro model for dry eye. Cont. Lens Ant. Eye 41, 13–17 (2018).

48. C. Kostic, S. G. Lillico, S. V. Crippa, N. Grandchamp, H. Pilet, S. Philippe, Z. Lu, T. J. King, J. Mallet, C. Sarkis, Y. Arsenijevic, C. B. A. Whitelaw, Rapid cohort generation and analysis of disease spectrum of large animal model of cone dystrophy. PLOS ONE 8, e71363 (2013).

49. J. R. Sommer, J. L. Estrada, E. B. Collins, M. Bedell, C. A. Alexander, Z. Yang, G. Hughes, B. Mir, B. C. Gilger, S. Grob, X. Wei, J. A. Piedrahita, P. X. Shaw, R. M. Petters, K. Zhang, Production of ELOVL4 transgenic pigs: A large animal model for Stargardt-like macular degeneration. Brit. J. Ophthal. 95, 1749–1754 (2011).

50. J. Štembírek, M. Kyllar, I. Putnova, L. Stehlík, M. Buchtová, The pig as an experimental model for clinical craniofacial research. Lab. Anim. 46, 269–279 (2012).

51. J. A. McGovern, M. Griffin, D. W. Hutmacher, Animal models for bone tissue engineering and modelling disease. Dis. Model. Mech. 11, dmm033084 (2018).

52. M. A. Birkelbach, R. Smeets, I. Fiedler, L. Kluwe, M. Wehner, T. Trebst, P. Hartjen, In vitro feasibility analysis of a new sutureless wound-closure system based on a temperatureregulated laser and a transparent collagen membrane for laser tissue soldering (LTS). Int. J. Mol. Sci. 21, 7104 (2020).

53. J. Hu, Y. Cao, Y. Xie, H. Wang, Z. Fan, J. Wang, C. Zhang, J. Wang, C.-T. Wu, S. Wang, Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res. Ther. 7, 130 (2016).

54. W. Sonoyama, Y. Liu, D. Fang, T. Yamaza, B.-M. Seo, C. Zhang, H. Liu, S. Gronthos, C.-Y. Wang, S. Wang, S. Shi, Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLOS ONE 1, e79 (2006).

55. A. I. Pearce, R. G. Richards, S. Milz, E. Schneider, S. G. Pearce, Animal models for implant biomaterial research in bone: A review. Eur. Cell. Mater. 13, 1–10 (2007).

56. S. G. Cone, P. B. Warren, M. B. Fisher, Rise of the pigs: Utilization of the porcine model to study musculoskeletal biomechanics and tissue engineering during skeletal growth. Tissue Eng. Part C Methods 23, 763–780 (2017).

57. W. Kosorn, M. Sakulsumbat, T. Lertwimol, B. Thavornyutikarn, P. Uppanan, S. Chantaweroad, W. Janvikul, Chondrogenic phenotype in responses to poly(ɛcaprolactone) scaffolds catalyzed by bioenzymes: Effects ofsurface topography and chemistry. J. Mater. Sci. Mater. Med. 30, 128 (2019).

58. B. Zhang, C. Wang, Y. Zhang, Y. Jiang, Y. Qin, D. Pang, G. Zhang, H. Liu, Z. Xie, H. Yuan, H. Ouyang, J. Wang, X. Tang, A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans. Bone 137, 115450 (2020).

59. A. Bassols, C. Costa, D. P. Eckersall, J. Osada, J. Sabrià, J. Tibau, The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clin. Appl. 8, 715–731 (2014).

60. D. J. Wells, Tracking progress: An update on animal models for Duchenne muscular dystrophy. Dis. Model Mech. 11, dmm035774 (2018).

61. A. Moretti, L. Fonteyne, F. Giesert, P. Hoppmann, A. B. Meier, T. Bozoglu, A. Baehr, C. M. Schneider, D. Sinnecker, K. Klett, T. Fröhlich, F. A. Rahman, T. Haufe, S. Sun, V. Jurisch, B. Kessler, R. Hinkel, R. Dirschinger, E. Martens, C. Jilek, A. Graf, S. Krebs, G. Santamaria, M. Kurome, V. Zakhartchenko, B. Campbell, K. Voelse, A. Wolf, T. Ziegler, S. Reichert, S. Lee, F. Flenkenthaler, T. Dorn, I. Jeremias, H. Blum, A. Dendorfer, A. Schnieke, S. Krause, M. C. Walter, N. Klymiuk, K. L. Laugwitz, E. Wolf, W. Wurst, C. Kupatt, Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat. Med. 26, 207–214 (2020).

62. H.-H. Yu, H. Zhao, Y.-B. Qing, W.-R. Pan, B.-Y. Jia, H.-Y. Zhao, X.-X. Huang, H.-J. Wei, Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int. J. Mol. Sci. 17, 1668 (2016).

63. S. I. Duque, W. D. Arnold, P. Odermatt, X. Li, P. N. Porensky, L. Schmelzer, K. Meyer, S. J. Kolb, D. Schümperli, B. K. Kaspar, A. H. M. Burghes, A large animal model ofspinal muscular atrophy and correction of phenotype. Ann. Neurol. 77, 399–414 (2015).

64. E. Abd, S. A. Yousef, M. N. Pastore, K. Telaprolu, Y. H. Mohammed, S. Namjoshi, J. E. Grice, M. S. Roberts, Skin models for the testing of transdermal drugs. Clin. Pharmacol. 8, 163–176 (2016).

65. M. K. McIntyre, T. J. Peacock, K. S. Akers, D. M. Burmeister, Initial characterization of the pig skin bacteriome and its effect on in vitro models of wound healing. PLOS ONE 11, e0166176 (2016).

66. P. Holzer, J. Adkins, K. Moulton, L. Zhu, R. Monroy, C. L. Cetrulo, Vital porcine gal-knockout skin transplants provide efficacious temporary closure of full-thickness wounds: Good laboratory practice-compliant studies in nonhuman primates. J. Burn Care Res. 41, 229–240 (2020).

67. X. Zhou, J. Xin, N. Fan, Q. Zou, J. Huang, Z. Ouyang, Y. Zhao, B. Zhao, Z. Liu, S. Lai, Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell. Mol. Life Sci. 72, 1175–1184 (2015)

68. C. Mo, L. Lu, D. Liu, K. Wei, Development of erianin-loaded dendritic mesoporous silica nanospheres with pro-apoptotic effects and enhanced topical delivery. J. Nanobiotechnol. 18, 55 (2020).

69. A. C. L. Brasileiro, D. C. deOliveira, P. B. da Silva, J. K. S. de Lima Rocha, Impact of topical nifedipine on wound healing in animal model (pig). J. Vasc. Bras. 19, e20190092 (2020).

70. J. Konstantinović, S. Yahiaoui, A. Alhayek, J. Haupenthal, E. Schönauer, A. Andreas, A. M. Kany, R. Müller, J. Koehnke, F. K. Berger, M. Bischoff, R. W. Hartmann, H. Brandstetter, A. K. H. Hirsch, N-Aryl-3-mercaptosuccinimides as antivirulence agents targeting Pseudomonas aeruginosa elastase and Clostridium Collagenases. J. Med. Chem. 63, 8359–8368 (2020).

71. J. H. Hwang, H. Jeong, N. Lee, S. Hur, N. Lee, J. J. Han, H. W. Jang, W. K. Choi, K. T. Nam, K. M. Lim, Ex vivo live full-thickness porcine skin model as a versatile in vitro testing method forskin barrier research. Int. J. Mol. Sci. 22, 657 (2021).

72. A. Summerfield, F. Meurens, M. E. Ricklin, The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 66, 14–21 (2015).

73. C. Tapking, D. Popp, L. K. Branski, in Skin Tissue Engineering (Springer, 2019), pp. 239–249.

74. B. R. Mordhorst, R. S. Prather, Pig models of reproduction. Anim. Mod. Hum. Reprod. 9, 213–234 (2017).

75. I. Virant-Klun, J. Krijgsveld, Proteomes of animal oocytes: What can we learn for human oocytes in the in vitro fertilization programme? Bio. Med. Res. Int. 2014, 856907 (2014).

76. J.-W. Lee, X. C. Tian, X. Yang, Failure of male pronucleus formation is the major cause of lack of fertilization and embryo development in pig oocytes subjected to intracytoplasmic sperm injection. Biol. Reprod. 68, 1341–1347 (2003).

77. R. R. Santos, E. J. Schoevers, B. A. J. Roelen, Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod. Biol. Endocrinol. 12, 117 (2014).

78. O. J. D’cruz, D. Erbeck, F. M. Uckun, A study of the potential of the pig as a model for the vaginal irritancy of benzalkonium chloride in comparison to the nonirritant microbicide PHI-443 and the spermicide vanadocene dithiocarbamate. Toxicol. Pathol. 33, 465–476 (2005).

79. C. G. Lucas, P. R. Chen, F. K. Seixas, R. S. Prather, T. Collares, Applications of omics and nanotechnology to improve pig embryo production in vitro. Mol. Reprod. Dev. 86, 1531–1547 (2019).

80. M. D. Andersen, A. K. O. Alstrup, C. S. Duvald, E. F. R. Mikkelsen, M. H. Vendelbo, P. G. Ovesen, M. Pedersen, Animal models of fetal medicine and obstetrics, in Experimental Animal Models of Human Diseases—An Effective Therapeutic Strategy (IntechOpen, 2018).

81. F. W. Bazer, Pregnancy recognition signaling mechanisms in ruminants and pigs. J. Anim. Sci. Biotechnol. 4, 23 (2013).

82. G. Li, Q. Jia, J. Zhao, X. Li, M. Yu, M. S. Samuel, S. Zhao, R. S. Prather, C. Li, Dysregulation of genome-wide gene expression andDNA methylation in abnormal cloned piglets. BMC Genomics 15, 811 (2014).

83. F. Pértille, M. Alvarez-Rodriguez, A. N. da Silva, I. Barranco, J. Roca, C. Guerrero-Bosagna, H. Rodriguez-Martinez, Sperm methylome profiling can discern fertility levels in the porcine biomedical model. Int. J. Mol. Sci. 22, 2679 (2021).

84. R. M. Ricke, J. M. Van Deursen, Aneuploidy in health, disease, and aging. J. Cell Biol. 201, 11–21 (2013).

85. M. Hornak, M. Jeseta, P. Musilova, A. Pavlok, M. Kubelka, J. Motlik, J. Rubes, M. Anger, Frequency of aneuploidy related to age in porcine oocytes. PLOS ONE 6, e18892 (2011).

86. A. E. Newell-Fugate, J. N. Taibl, M. Alloosh, M. Sturek, R. A. Nowak, R. L. Krisher, Follicular dynamics and estrous cycle features of theOssabaw pig model of polycystic ovary syndrome (PCOS). Biol. Reprod. 85, 818 (2011).

87. D. B. Wiest, M. M. Swindle, S. S. Garner, A. C. Smith, P. C. Gillette, Pregnant Yucatan miniature swine as a model for investigating fetal drug therapy, in Advances in Swine in Biomedical Research, M. E. Tumbleson, L. B. Schook, Eds. (Springer, 1996), pp. 629–635.

88. K. Ferenc, P. Pietrzak, M. M. Godlewski, J. Piwowarski, R. Kiliańczyk, P. Guilloteau, R. Zabielski, Intrauterine growth retarded piglet as a model for humans--studies on the perinatal development of the gut structure and function. Reprod. Biol. 14, 51–60 (2014).

89. Y. Jiang, Y. Jiang, H. Zhang, M. Mei, H. Song, X. Ma, L. Jiang, Z. Yu, Q. Zhang, X. Ding, A mutation in MAP2 is associated with prenatal hair follicle density. FASEB J. 33, 14479–14490 (2019).

90. E. Roura, S.-J. Koopmans, J.-P. Lalles, I. Le Huerou-Luron, N. de Jager, T. Schuurman, D. Val-Laillet, Critical review evaluating the pig as a model for human nutritional physiology. Nutr. Res. Rev. 29, 60–90 (2016).

91. L. Xiao, J. Estellé, P. Kiilerich, Y. Ramayo-Caldas, Z. Xia, Q. Feng, S. Liang, A. Ø. Pederson, N. J. Kjeldsen, C. Liu, E. Maguin, J. Doré, N. Pons, E. Le Chatelier, E. Prifti, J. Li, H. Jia, X. Liu, X. Xu, S. D. Ehrlich, L. Madsen, K. Kristiansen, C. Rogel-Gaillard, J. Wang, A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1, 16161 (2016).

92. R. Kobayashi, K. Nagaoka, N. Nishimura, S. Koike, E. Takahashi, K. Niimi, H. Murase, T. Kinjo, T. Tsukahara, R. Inoue, Comparison of the fecal microbiota of two monogastric herbivorous and five omnivorous mammals. Anim. Sci. J. 91, e13366 (2020).

93. R. Pedersen, A. D. Andersen, L. Mølbak, J. Stagsted, M. Boye, Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: Gut microbiota during development of obesity in cloned pigs. BMC Microbiol. 13, 30 (2013).

94. M. Wang, S. M. Donovan, Human microbiota-associated swine: Current progress and future opportunities. ILAR J. 56, 63–73 (2015).

95. H. Michael, F. C. Paim, S. N. Langel, A. Miyazaki, D. D. Fischer, J. Chepngeno, J. Amimo, L. Deblais, G. Rajashekara, L. J. Saif, A. N. Vlasova, Escherichia coli Nissle 1917 enhances innate and adaptive immune responses in a ciprofloxacin-treated defined-microbiota piglet model of human rotavirus infection. mSphere 6, e00074-21 (2021).

96. J. Jeon, J. Lourenco, E. E. Kaiser, E. S. Waters, K. M. Scheulin, X. Fang, H. A. Kinder, S. R. Platt, M. J. Rothrock Jr., T. R. Callaway, F. D. West, H. J. Park, Dynamic changes in the gut microbiome at the acute stage of ischemic stroke in a pig model. Front. Neurosci. 14, 587986 (2020).

97. P. Puiman, B. Stoll, Animal models to study neonatal nutrition in humans. Curr. Opin. Clin. Nutr. Metab. Care 11, 601–606 (2008).

98. D. Burrin, P. T. Sangild, B. Stoll, T. Thymann, R. Buddington, J. Marini, O. Olutoye, R. J. Shulman, Translational advances in pediatric nutrition and gastroenterology: New insights from pig models. Annu. Rev. Anim. Biosci. 8, 321–354 (2020).

99. S. Renner, A. Blutke, S. Clauss, C. A. Deeg, E. Kemter, D. Merkus, R. Wanke, E. Wolf, Porcine models forstudying complications and organ crosstalk in diabetes mellitus. Cell Tissue. Res. 380, 341–378 (2020).

100. V. Mani, J. H. Hollis, N. K. Gabler, Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr. Metab. 10, 6 (2013).

101. V. Charepalli, L. Reddivari, S. Radhakrishnan, E. Eriksson, X. Xiao, S. W. Kim, F. Shen, M. Vijay-Kumar, Q. Li, V. B. Bhat, R. Knight, J. K. P. Vanamala, Pigs, unlike mice, have two distinct colonic stem cell populations similar to humans that respond to high-calorie diet prior to insulin resistance. Cancer Prev. Res. 10, 442–450 (2017).

102. N. M. Lind, A. Moustgaard, J. Jelsing, G. Vajta, P. Cumming, A. K. Hansen, The use of pigs in neuroscience: Modeling brain disorders. Neurosci. Biobehav. Rev. 31, 728–751 (2007).

103. G. Simchick, A. Shen, B. Campbell, H. J. Park, F. D. West, Q. Zhao, Pig brains have homologous resting-state networks with human brains. Brain Connect. 9, 566–579 (2019).

104. S. R. Platt, S. P. Holmes, E. W. Howerth, K. J. J. Duberstein, C. R. Dove, H. A. Kinder, E. L. Wyatt, A. V. Linville, V. W. Lau, S. L. Stice, W. D. Hill, D. C. Hess, F. D. West, Development and characterization of a Yucatan miniature biomedical pig permanent middle cerebral artery occlusion stroke model. Exper. Transl. Stroke Med. 6, 5 (2014).

105. K. M. Scheulin, B. J. Jurgielewicz, S. E. Spellicy, E. S. Waters, E. W. Baker, H. A. Kinder, G. A. Simchick, S. E. Sneed, J. A. Grimes, Q. Zhao, S. L. Stice, F. D. West, Exploring the predictive value of lesion topology on motor function outcomes in a porcine ischemic stroke model. Sci. Rep. 11, 3814 (2021).

106. J. E. Fil, S. Joung, B. J. Zimmerman, B. P. Sutton, R. N. Dilger, High-resolution magnetic resonance imaging-based atlases for the young and adolescent domesticated pig (Sus scrofa). J. Neurosci. Method 354, 109107 (2021).

107. C. Norris, J. Lisinski, E. McNeil, J. W. VanMeter, P. VandeVord, S. M. LaConte, MRI brain templates of the male Yucatan minipig. Neuroimage 235, 118015 (2021).

108. A. Hellman, T. Maietta, A. Clum, K. Byraju, N. Raviv, M. D. Staudt, E. Jeannotte, J. Nalwalk, S. Belin, Y. Poitelon, J. G. Pilitsis, Development of a common peroneal nerve injury model in domestic swine for the study of translational neuropathic pain treatments. J. Neurosurg. 16, 1–8 (2021).

109. B. Mahan, F. Moynier, A. L. Jørgensen, M. Habekost, J. Siebert, Examining the homeostatic distribution of metals and Zn isotopes in Göttingen minipigs. Metallomics 10, 1264–1281 (2018).

110. S.-E. Lee, H. Hyun, M.-R. Park, Y. Choi, Y.-J. Son, Y.-G. Park, S.-G. Jeong, M.-Y. Shin, H.-J. Ha, H.-S. Hong, M.-K. Choi, G.-S. Im, E.-W. Park, Y.-H. Kim, C. Park, E.-Y. Kim, S.-P. Park, Production of transgenic pig as an Alzheimer’s disease model using a multi-cistronic vector system. PLOS ONE 12, e0177933 (2017).

111. M. Mikkelsen, A. Møller, L. H. Jensen, A. Pedersen, J. B. Harajehi, H. Pakkenberg, MPTP-induced Parkinsonism in minipigs: A behavioral, biochemical, and histological study. Neurotoxicol. Teratol. 21, 169–175 (1999).

112. A. B. Christensen, J. C. H. Sørensen, K. S. Ettrup, D. Orlowski, C. R. Bjarkam, Pirouetting pigs: A large non-primate animal model based on unilateral 6-hydroxydopamine lesioning of the nigrostriatal pathway. Brain Res. Bull. 139, 167–173 (2018).

113. J. Yao, J. Huang, T. Hai, X. Wang, G. Qin, H. Zhang, R. Wu, C. Cao, J. J. Xi, Z. Yuan, J. Zhao, Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci. Rep. 4, 6926 (2014).

114. M. A. Lorson, L. D. Spate, M. S. Samuel, C. N. Murphy, C. L. Lorson, R. S. Prather, K. D. Wells, Disruption of the survival motor neuron (SMN) gene in pigs using ssDNA. Transgenic Res. 20, 1293–1304 (2011).

115. R. Beraldi, C.-H. Chan, C. S. Rogers, A. D. Kovacs, D. K. Meyerholz, C. Trantzas, A. M. Lambertz, B. W. Darbro, K. L. Weber, K. A. M. White, R. V. Rheeden, M. C. Kruer, B. A. Dacken, X.-J. Wang, B. T. Davis, J. A. Rohret, J. T. Struzynski, F. A. Rohret, J. M. Weimer, D. A. Pearce, A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Human Molec. Genet. 24, 6473–6484 (2015)

116. P. Chang, A. M. Williams, U. F. Bhatti, B. E. Biesterveld, B. Liu, V. C. Nikolian, I. S. Dennahy, J. Lee, Y. Li, H. B. Alam, Valproic acid and neural apoptosis, inflammation, and degeneration 30 days after traumatic brain injury, hemorrhagic shock, and polytrauma in a swine model. J. Am. Coll. Surg. 228, 265–275 (2019).

117. H. Yang, G. Wang, H. Sun, R. Shu, T. Liu, C. E. Wang, Z. Liu, Y. Zhao, B. Zhao, Z. Ouyang, D. Yang, J. Huang, Y. Zhou, S. Li, X. Jiang, Z. Xiao, X. J. Li, L. Lai, Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res. 24, 464–481 (2014).

118. S. Yan, Z. Tu, Z. Liu, N. Fan, H. Yang, S. Yang, W. Yang, Y. Zhao, Z. Ouyang, C. Lai, H. Yang, L. Li, Q. Liu, H. Shi, G. Xu, H. Zhao, H. Wei, Z. Pei, S. Li, L. Lai, X.-J. Li, A Huntingtin knockin pig model recapitulates features ofselective neurodegeneration in Huntington’s disease. Cell 173, 989–1002.e13 (2018).

119. J. R. Turk, K. K. Henderson, G. D. Vanvickle, J. Watkins, M. H. Laughlin, Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease. Int. J. Exp. Path. 86, 335–345 (2005).

120. I. Hunter, D. Terzic, N. E. Zois, L. H. Olsen, J. P. Goetze, Pig models for the human heart failure syndrome. Cardiovasc. Endocrinol. Metab. 3, 15–18 (2014).

121. Y. Suzuki, A. C. Yeung, F. Ikeno, The representative porcine model for human cardiovascular disease. J. Biomed. Biotechnol. 2011, 195483 (2011).

122. A. Le Bras, A resource forselecting animal models of heart disease. Lab Anim. 48, 332 (2019).

123. H. Kitahara, H. Yagi, K. Tajima, K. Okamoto, A. Yoshitake, R. Aeba, M. Kudo, I. Kashima, S. Kawaguchi, A. Hirano, M. Kasai, Y. Akamatsu, H. Oka, Y. Kitagawa, H. Shimizu, Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interact. Cardiovasc. Thorac. Surg. 22, 571–579 (2016).

124. P. Lanuti, F. Serafina, L. Pierdomenico, P. Simeone, G. Bologna, E. Ercolino, S. Di Silvestre, C. Canosa, G. G. Impicciatore, S. Chiarini, F. Magnacca, M. Addolorata Mariggiò, A. Pandolfi, M. Marchisio, G. Di Giammarco, S. Miscia, Human mesenchymal stem cells reendothelialize porcine heart valve scaffolds: Novel perspectives in heart valve tissue engineering. Biores. Open Access 4, 288–297 (2015).

125. A. Schuster, I. Grünwald, A. Chiribiri, R. Southworth, M. Ishida, G. Hay, N. Neumann, G. Morton, D. Perera, T. Schaeffter, E. Nagel, An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. J. Cardiol. Magn. Reson. 12, 53 (2010).

126. N. Pallares-Lupon, G. Ramlugun, V. Ozenne, J. Duchâteau, A. Delgove, J. Bayer, A. Moreno, M. Constantin, D. Gerneke, G.B. Sands, M.L. Trew, M. Hocini, M. Haissaguerre, E.J. Vigmond, B. Quesson, O. Bernus, R.D. Walton, Optimizing large organ scale micro computed tomography imaging in pig and human hearts using a novel air-drying technique. bioRxiv 2021.07.29.454121 [Preprint]. 29 July 2021. https://doi. org/10.1101/2021.07.29.454121.

127. F. Casas, H. Alam, A. Reeves, Z. Chen, W. A. Smith, A portable cardiopulmonary bypass/ extracorporeal membrane oxygenation system for the induction and reversal of profound hypothermia: Feasibility study in a swine model of lethal injuries. Artif. Organs 29, 557–563 (2005).

128. L. A. Geddes, R. A. Roeder, A. E. Rundell, M. P. Otlewski, A. E. Kemeny, A. E. Lottes, The natural biochemical changes during ventricular fibrillation with cardiopulmonary resuscitation and the onset of postdefibrillation pulseless electrical activity. Am. J. Emer. Med. 24, 577–581 (2006).

129. D. S. Park, M. Cerrone, G. Morley, C. Vasquez, S. Fowler, N. Liu, S. A. Bernstein, F. Y. Liu, J. Zhang, C. S. Rogers, S. G. Priori, L. A. Chinitz, G. I. Fishman, Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest. 125, 403–412 (2015).

130. B. T. Davis, X. J. Wang, J. A. Rohret, J. T. Struzynski, E. P. Merricks, D. A. Bellinger, F. A. Rohret, T. C. Nichols, C. S. Rogers, Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLOS ONE 9, e93457 (2014).

131. J. Montag, B. Petersen, A. K. Flögel, E. Becker, A. Lucas-Hahn, G. J. Cost, C. Mühlfeld, T. Kraft, H. Niemann, B. Brenner, Successful knock-in of hypertrophic cardiomyopathymutation R723G into the MYH7 gene mimics HCM pathology inpigs. Sci. Rep. 8, 4786 (2018).

132. A. Porzionato, E. Stocco, S. Barbon, F. Grandi, V. Macchi, R. De Caro, Tissue-engineered grafts from human decellularized extracellular matrices: A systematic review and future perspectives. Int. J. Mol. Sci. 19, 4117 (2018).

133. E. P. Judge, J. M. Hughes, J. J. Egan, M. Maquire, E. L. Molloy, S. O’Dea, Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. Am. J. Respir. Cell Mol. Biol. 51, 334–343 (2014).

134. M. Gyöngyösi, C. Strehblow, W. Sperker, A. Hevesi, R. Garamvolgyi, Z. Petrasi, N. Pavo, P. Ferdinandy, C. Csonka, T. Csont, C. Sylvèn, P. J. Declerck, I. P. Jr, J. Wojta, D. Glogar, K. Huber, Platelet activation and high tissue factor level predict acute stent thrombosis in pig coronary arteries: Prothrombogenic response of drug-eluting or bare stent implantation within the first 24 hours. Thromb. Haemost. 96, 202–209 (2006)

135. J. D. O'Neill, R. Anfang, A. Anandappa, J. Javidfar, H. M. Wobma, G. Singh, D. O. Freytes, M. D. Bacchetta, J. R. Sonett, G. Vunjak-Novakovic, Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann. Thorac. Surg. 96, 1046–1056 (2013).

136. J. L. Balestrini, A. L. Gard, A. Liu, K. L. Leiby, J. Schwan, B. Kunkemoeller, E. A. Calle, A. Sivarpatna, T. Lin, S. Dimitrievska, S. G. Cambpell, L. E. Niklason, Production of decellularized porcine lung scaffolds for use in tissue engineering. Integr. Biol. 7, 1598–1610 (2015).

137. C. S. Rogers, Y. Hao, T. Rokhlina, M. Samuel, D. A. Stoltz, Y. Li, E. Petroff, D. W. Vermeer, A. C. Kabel, Z. Yan, L. Spate, D. Wax, C. N. Murphy, A. Rieke, K. Whitworth, M. L. Linville, S. W. Korte, J. F. Engelhardt, M. J. Welsh, R. S. Prather, Production of CFTR-null and CFTR-F508 heterozygous pigs by adeno-associated virus–mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118, 1571–1577 (2008).

138. C. S. Rogers, D. A. Stoltz, D. K. Meyerholz, L. S. Ostedgaard, T. Rokhlina, P. J. Taft, M. P. Rogan, A. A. Pezzulo, P. H. Karp, O. A. Itani, A. C. Kabel, C. L. Wohlford-Lenane, G. J. Davis, R. A. Hanfland, T. L. Smith, M. Samuel, D. Wax, C. N. Murphy, A. Rieke, K. Whitworth, A. Uc, T. D. Starner, K. A. Brogden, J. Shilyansky, P. B. McCray Jr., J. Zabner, R. S. Prather, M. J. Welsh, Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837–1841 (2008).

139. D. A. Stoltz, D. K. Meyerholz, A. A. Pezzulo, S. Ramachandran, M. P. Rogan, G. J. Davis, R. A. Hanfland, C. Wohlford-Lenane, C. L. Dohrn, J. A. Bartlett, G. A. Nelson IV, E. H. Chang, P. J. Taft, P. S. Ludwig, M. Estin, E. E. Hornick, J. L. Launspach, M. Samuel, T. Rokhlina, P. H. Karp, L. S. Ostedgaard, A. Uc, T. D. Starner, A. R. Horswill, K. A. Brogden, R. S. Prather, S. S. Richter, J. Shilyansky, P. B. McCray Jr., J. Zabner, M. J. Welsh, Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Trans. Med. 2, 29ra31 (2010).

140. E. H. Chang, A. A. Pezzulo, D. K. Meyerholz, A. E. Potash, T. J. Wallen, L. R. Reznikov, J. C. Sieren, P. H. Karp, S. Ernst, T. O. Moninger, N. D. Gansemer, P. B. McCray Jr., D. A. Stoltz, M. J. Welsh, J. Zabner, Sinus hypoplasia precedes sinus infection in a porcine model of cystic fibrosis. Laryngoscope 122, 1898–1905 (2012).

141. D. A. Stoltz, D. K. Meyerholz, M. J. Welsh, Origins of cystic fibrosis lung disease. N. Engl. J. Med. 372, 351–362 (2015).

142. A. A. Pezzulo, X. X. Tang, M. J. Hoegger, M. H. A. Alaiwa, S. Ramachandran, T. O. Moninger, P. H. Karp, C. L. Wohlford-Lenane, H. P. Haagsman, M. Van Eijk, B. Bánfi, A. R. Horswill, D. A. Stoltz, P. B. McCray Jr., M. J. Welsh, J. Zabner, Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487, 109–113 (2012).

143. M. J. Hoegger, A. J. Fischer, J. D. McMenimen, L. S. Ostedgaard, A. J. Tucker, M. A. Awadalla, T. O. Moninger, A. S. Michalski, E. A. Hoffman, J. Zabner, D. A. Stoltz, M. J. Welsh, Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345, 818–822 (2014).

144. X. X. Tang, L. S. Ostedgaard, M. J. Hoegger, T. O. Moninger, P. H. Karp, J. D. McMenimen, B. Choudhury, A. Varki, D. A. Stoltz, M. J. Welsh, Acidic pH increases airway surface liquid viscosity in cystic fibrosis. J. Clin. Invest. 126, 879–891 (2016).

145. X. Li, X. X. Tang, L. G. Vargas Buonfiglio, A. P. Comellas, I. M. Thornell, S. Ramachandran, P. H. Karp, P. J. Taft, K. Sheets, M. H. Abou Alaiwa, M. J. Welsh, D. K. Meyerholz, D. A. Stoltz, J. Zabner, Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense. Am. J. Physiol. Lung Cell. Mol. Physiol. 310, L670–L679 (2016).

146. D. A. Stoltz, T. Rokhlina, S. E. Ernst, A. A. Pezzulo, L. S. Ostedgaard, P. H. Abou Alaiwa, M. J. Hoegger, P. S. Ludwig, P. J. Taft, T. J. Wallen, C. Wohlford-Lenane, J. D. McMenimen, J. H. Chen, K. L. Bogan, R. J. Adam, E. E. Hornick, G. A. Nelson IV, E. A. Hoffman, E. H. Chang, J. Zabner, P. B. McCray Jr., R. S. Prather, D. K. Meyerholz, M. J. Welsh, Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J. Clin. Invest. 123, 2685–2693 (2013).

147. D. K. Meyerholz, D. A. Stoltz, N. D. Gansemer, S. E. Ernst, D. P. Cook, M. D. Strub, E. N. LeClair, C. K. Barker, R. J. Adam, M. R. Leidinger, K. N. Gibson-Corley, P. H. Karp, M. J. Welsh, P. B. McCray Jr., Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. Lab. Invest. 98, 825–838 (2018).

148. B. Steines, D. D. Dickey, J. Bergen, K. Excoffon, J. R. Weinstein, X. Li, Z. Yan, M. H. A. Alaiwa, V. S. Shah, D. C. Bouzek, L. S. Powers, N. D. Gansemer, L. S. Ostedgaard, J. F. Engelhardt, D. A. Stoltz, M. J. Welsh, P. L. Sinn, D. V. Schaffer, J. Zabner, CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight 1, e88728 (2016).

149. J. Ferrer, W. E. Scott 3rd, B. P. Weegman, T. M. Suszynski, D. E. Sutherland, B. J. Hering, K. K. Papas, Pig pancreas anatomy: Implications for pancreas procurement, preservation, and islet isolation. Transplantation 86, 1503–1510 (2008).

150. D. Niu, X. Ma, T. Yuan, Y. Niu, Y. Xu, Z. Sun, Y. Ping, W. Li, J. Zhang, T. Wang, Porcine genome engineering for xenotransplantation. Adv. Drug Deliv. Rev. 168, 229–245 (2021).

151. D. J. Steiner, A. Kim, K. Miller, M. Hara, Pancreatic islet plasticity: Interspecies comparison of islet architecture and composition. Islets 2, 135–145 (2010).

152. E. Wolf, C. Braun-Reichhart, E. Streckel, S. Renner, Genetically engineered pig models for diabetes research. Transgenic Res. 23, 27–38 (2014).

153. M. Liu, J. Sun, J. Cui, W. Chen, H. Guo, F. Barbetti, P. Arvan, INS-gene mutations: From genetics and beta cell biology to clinical disease. Mol. Aspects Med. 42, 3–18 (2015).

154. A. L. Watson, D. F. Carlson, D. A. Largaespada, P. B. Hackett, S. C. Fahrenkrug, Engineered swine models of cancer. Front. Genet. 7, 78 (2016).

155. J. Borovanský, V. Horák, M. Elleder, K. Fortýn, N. P. Smit, A. M. Kolb, Biochemical characterization of a new melanoma model—The minipig MeLiM strain. Melanoma Res. 13, 543–548 (2003).

156. J. F. Greene Jr., C. D. Morgan, A. Rao, M. S. Amoss Jr., F. Arguello, Regression by differentiation in the Sinclair swine model of cutaneous melanoma. Melanoma Res. 7, 471–477 (1997).

157. N. H. Overgaard, T. M. Fan, K. M. Schachtschneider, D. R. Principe, L. B. Schook, G. Jungersen, Of mice, dogs, pigs, and men: Choosing the appropriate model for immuno-oncology research. ILAR J. 59, 247–262 (2018).

158. T. Flisikowska, A. Kind, A. Schnieke, The new pig on the block: Modelling cancer in pigs. Transgenic Res. 22, 673–680 (2013).

159. D. Kalla, A. Kind, A. Schnieke, Genetically engineered pigs to study cancer. Int. J. Molec. Sci. 21, 488 (2020).

160. Y. Luo, J. Li, Y. Liu, L. Lin, Y. Du, S. Li, H. Yang, G. Vajta, H. Callesen, L. Bolund, C. B. Sørensen, High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: Developing a pig model for breast cancer. Transgenic Res. 20, 975–988 (2011).

161. T. Flisikowska, C. Merkl, M. Landmann, S. Eser, N. Rezaei, X. Cui, M. Kurome, V. Zakhartchenko, B. Kessler, H. Wieland, O. Rottmann, R. M. Schmid, G. Schneider, A. Kind, E. Wolf, D. Saur, A. Schnieke, A porcine model of familial adenomatous polyposis. Gastroenterology 143, 1173–1175.e7 (2012).

162. S. H. Isakson, A. E. Rizzardi, A. W. Coutts, D. F. Carlson, M. N. Kirstein, J. Fisher, J. Vitte, K. B. Williams, G. E. Pluhar, S. Dahiya, B. C. Widemann, E. Dombi, T. Rizvi, N. Ratner, L. Messiaen, A. O. Stemmer-Rachamimov, S. C. Fahrenkrug, D. H. Gutmann, M. Giovannini, C. L. Moertel, D. A. Largaespada, A. L. Watson, Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun. Biol. 1, 158 (2018).

163. J. Uthoff, J. Larson, T. S. Sato, E. Hammond, K. E. Schroeder, F. Rohret, C. S. Rogers, D. E. Quelle, B. W. Darbro, R. Khanna, J. M. Weimer, D. K. Meyerholz, J. C. Sieren, Longitudinal phenotype development in a minipig model of neurofibromatosis type 1. Sci. Rep. 10, 5046 (2020).

164. L. B. Schook, T. V. Collares, W. Hu, Y. Liang, F. M. Rodrigues, L. A. Rund, K. M. Schachtschneider, F. K. Seixas, K. Singh, K. D. Wells, E. M. Walters, R. S. Prather, C. M. Counter, A genetic porcine model of cancer. PLOS ONE 10, e0128864 (2015).

165. K. M. Schachtschneider, R. M. Schwind, J. Newson, N. Kinachtchouk, M. Rizko, N. Mendoza-Elias, P. Grippo, D. R. Principe, A. Park, N. H. Overgaard, G. Jungersen, K. D. Garcia, A. V. Maker, L. A. Rund, H. Ozer, R. C. Gaba, L. B. Schook, The Oncopig Cancer Model: Aninnovative large animal translational oncology platform. Front. Oncol. 7, 190 (2017).

166. S. S. Patel, A. Sandur, M. El-Kebir, R. C. Gaba, L. B. Schook, K. M. Schachtschneider, Transcriptional profiling of porcine HCC xenografts provides insights into tumor cell microenvironment signaling. Front. Genet. 12, 657330 (2021).

167. S. Suzuki, M. Iwamoto, Y. Saito, D. Fuchimoto, S. Sembon, M. Suzuki, S. Mikawa, M. Hashimoto, Y. Aoki, Y. Najima, S. Takagi, N. Suzuki, E. Suzuki, M. Kubo, J. Mimuro, Y. Kashiwakura, S. Madoiwa, Y. Sakata, A. C. F. Perry, F. Ishikawa, A. Onishi, Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753–758 (2012).

168. M. Watanabe, K. Nakano, H. Matsunari, T. Matsuda, M. Maehara, T. Kanai, M. Kobayashi, Y. Matsumura, R. Sakai, M. Kuramoto, G. Hayashida, Y. Asano, S. Takayanagi, Y. Arai, K. Umeyama, M. Nagaya, Y. Hanazono, H. Nagashima, Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLOS ONE 8, e76478 (2013).

169. M. A. Iqbal, K. Hong, J. H. Kim, Y. Choi, Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines. BMB Rep. 52, 625–634 (2019).

170. E. J. Powell, J. E. Cunnick, C. K. Tuggle, SCID pigs: An emerging large animal NK model. J. Rare Dis. Res. Treat. 2, 1–6 (2017).

171. A. N. Boettcher, C. L. Loving, J. E. Cunnick, C. K. Tuggle, Development ofsevere combined immunodeficient (SCID) pig models for translational cancer modeling: Future insights on how humanized SCID pigs can improve preclinical cancer research. Front. Oncol. 8, 559 (2018).

172. A. N. Boettcher, Y. Li, A. P. Ahrens, M. Kiupel, K. A. Byrne, C. L. Loving, A. G. Cino-Ozuna, J. E. Wiarda, M. Adur, B. Schultz, J. J. Swanson, E. M. Snella, C. S. S. Ho, S. E. Charley, Z. E. Kiefer, J. E. Cunnick, E. J. Putz, G. Dell'Anna, J. Jens, S. Sathe, F. Goldman, E. R. Westin, J. C. M. Dekkers, J. W. Ross, C. K. Tuggle, Novel engraftment and T cell differentiation of human hematopoietic cells in ART−/−IL2RG−/Y SCID pigs. Front. Immunol. 11, 100 (2020).

173. N. Decaro, A. Lorusso, Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet. Microbiol. , 108693 (2020).

174. D. S. Rajao, C. L. Loving, E. H. Waide, P. C. Gauger, J. C. M. Dekkers, C. K. Tuggle, A. L. Vincent, Pigs with severe combined immunodeficiency are impaired in controlling influenza a virus infection. J. Innate Immun. 9, 193–202 (2017).

175. K. M. Whitworth, R. R. R. Rowland, C. L. Ewen, B. R. Trible, M. A. Kerrigan, A. G. Cino-Ozuna, M. S. Samuel, J. E. Lightner, D. G. McLaren, A. J. Mileham, K. D. Wells, R. S. Prather, Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34, 20–22 (2015).

176. S. McCleary, R. Strong, R. R. McCarthy, J. C. Edwards, E. L. Howes, L. M. Stevens, P. J. Sánchez-Cordón, A. Núñez, S. Watson, A. J. Mileham, S. G. Lillico, C. Tait-Burkard, C. Proudfoot, M. Ballantyne, C. B. A. Whitelaw, F. Steinbach, H. R. Crooke, Substitution of warthog NF-B motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. Sci. Rep. 10, 8951 (2020).

177. Q. Zhang, G. Widmer, S. Tzipori, A pig model of the human gastrointestinal tract. Gut Microbes 4, 193–200 (2013).

178. H. Derricott, L. Luu, W. Y. Fong, C. S. Hartley, L. J. Johnston, S. D. Armstrong, N. Randle, C. A. Duckworth, B. J. Campbell, J. M. Wastling, J. L. Coombes, Developing a 3D intestinal epithelium model for livestock species. Cell Tissue Res. 375, 409–424 (2019).

179. R. Lindecrona, C. Friis, J. Nielsen, Pharmacokinetics and penetration of danofloxacin into thegastrointestinal tract inhealthy andinSalmonella typhimurium infected pigs. Res. Vet. Sci. 68, 211–216 (2000).

180. D. H. Agersø, C. Friis, J. P. Nielsen, Pharmacokinetics and tissue distribution of amoxicillin in healthy and Salmonella typhimurium-inoculated pigs. Am. J. Vet. Res. 61, 992–996 (2000).

181. G.-Y. Yang, J. Yu, J.-H. Su, L.-G. Jiao, X. Liu, Y.-H. Zhu, Oral administration of Lactobacillus rhamnosus GG ameliorates Salmonella infantis-induced inflammation in a pig model via activation of the il-22bp/il-22/stat3 pathway. Front. Cell. Infect. Microbiol. 7, 323 (2017).

182. T. Tanaka, Y. Imai, N. Kumagae, S. Sato, The effect of feeding lactic acid to Salmonella typhimurium experimentally infected swine. J. Vet. Med. Sci. 7, 827–831 (2010).

183. N. Bertho, F. Meurens, The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol. Immunol. 135, 254–267 (2021).

184. C. Gil, C. Latasa, E. Garcia-Ona, I. Lazaro, J. Labairu, M. Echeverz, S. Burgui, B. Garcia, I. Lasa, C. Solano, A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs. Vet. Res. 51, 3 (2020).

185. D. Liebowitz, K. Gottlieb, N. S. Kolhatkar, S. J. Garg, J. M. Asher, J. Nazareno, K. Kim, D. R. Mcllwain, S. N. Tucker, Efficacy, immunogenicity, and safety of an oral influenza vaccine: A placebo-controlled and active-controlled phase 2 human challenge study. Lancet Infect. Dis. 20, 435–444 (2020).

186. S. M. Starbæk, L. Brogaard, H. D. Dawson, A. D. Smith, P. M. H. Heegaard, L. E. Larsen, G. Jungersen, K. Skovgaard, Animal models for influenza a virus infection incorporating the involvement of innate host defenses: Enhanced translational value of the porcine model. ILAR J. 59, 323–337 (2018).

187. A. Mehle, J. A. Doudna, Adaptive strategies of the influenza virus polymerase for replication in humans. Proc. Natl. Acad. Sci. U.S.A. 106, 21312–21316 (2009).

188. S. G. Van Poucke, J. M. Nicholls, H. J. Nauwynck, K. Van Reeth, Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol. J. 7, 38 (2010).

189. K. Tungatt, G. Dolton, S. B. Morgan, M. Attaf, A. Fuller, T. Whalley, J. D. Hemmink, E. Porter, B. Szomolay, M. Montoya, J. A. Hammond, J. J. Miles, D. K. Cole, A. Townsend, M. Bailey, P. J. Rizkallah, B. Charleston, E. Tchilian, A. K. Sewell, Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLOS Path. 14, e1007017 (2018).

190. M. Khatri, L. A. Richardson, T. Meulia, Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res. Ther. 9, 17 (2018).

191. S. Dhakal, X. Cheng, J. Salcido, S. Renu, K. Bondra, Y. S. Lakshmanappa, C. Misch, S. Ghimire, N. Feliciano-Ruiz, B. Hogshead, S. Krakowka, K. Carson, J. McDonough, C. W. Lee, G. J. Renukaradhya, Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. Int. J. Nanomed. 13, 6699–6715 (2018).

192. B. Holzer, S. B. Morgan, V. Martini, R. Sharma, B. Clark, C. Chiu, F. J. Salguero, E. Tchilian, Immunogenicity and protective efficacy ofseasonal human live attenuated cold-adapted influenza virus vaccine in pigs. Front. Immunol. 10, 2625 (2019).

193. R. Musharrafieh, C. Ma, J. Wang, Discovery of M2 channel blockers targeting the drugresistant double mutants M2-S31N/L26I and M2-S31N/V27A from the influenza A viruses. Eur. J. Pharm. Sci. 141, 105124 (2020).

194. L. Ramos, J. K. Lunney, M. Gonzalez-Juarrero, Neonatal and infant immunity for tuberculosis vaccine development: Importance of age-matched animal models. Dis. Model Mech. 13, dmm045740 (2020).

195. K. Schautteet, E. Stuyven, E. Cox, D. Vanrompay, Validation of the Chlamydia trachomatis genital challenge pig model for testing recombinant protein vaccines. J. Med. Microbiol. 60, 117–127 (2011).

196. E. Lorenzen, F. Follmann, G. Jungersen, J. S. Agerholm, A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Vet. Res. 46, 116 (2015).

197. A. F. Amaral, K. S. Rahman, A. R. Kick, L. M. Cortes, J. Robertson, B. Kaltenboeck, V. Gerdts, C. M. O'Connell, T. B. Poston, X. Zheng, C. Liu, S. Y. Omesi, T. Darville, T. Käser, Mucosal vaccination with UV-inactivated Chlamydia suis in pre-exposed outbred pigs decreases pathogen load and induces CD4 T-cell maturation into IFN-+ effector memory cells. Vaccines (Basel) 8, 353 (2020).

198. C. Prieto, P. Suarez, J. M. Bautista, R. Sanchez, S. M. Rillo, I. Simarro, A. Solana, J. M. Castro, Semen changes in boars after experimental infection with porcine reproductive and respiratory syndrome (PRRS) virus. Theriogenology 45, 383–395 (1996).

199. B. Ekser, M. Ezzelarab, H. Hara, D. J. VanDer Windt, M. Wijkstrom, R. Bottino, M. Trucco, D. K. C. Cooper, Clinical xenotransplantation: The next medical revolution? Lancet 379, 672–683 (2012).

200. R. A. Manji, W. Lee, D. K. C. Cooper, Xenograft bioprosthetic heart valves: Past, present and future. Int. J. Surgery 23, 280–284 (2015).

201. D. K. C. Cooper, B. Ekser, J. Ramsoondar, C. Phelps, D. Ayares, The role of genetically engineered pigs in xenotransplantation research. J. Pathol. 238, 288–299 (2016).

202. E. Wolf, E. Kemter, N. Klymiuk, B. Reichart, Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim. Front. 9, 13–20 (2019).

203. B. Reichart, M. Längin, J. Radan, M. Mokelke, I. Buttgereit, J. Ying, A. K. Fresch, T. Mayr, L. Issl, S. Buchholz, S. Michel, R. Ellgass, M. Mihalj, S. Egerer, A. Baehr, B. Kessler, E. Kemter, M. Kurome, V. Zakhartchenko, S. Steen, T. Sjöberg, A. Paskevicius, L. Krüger, U. Fiebig, J. Denner, A. W. Godehardt, R. R. Tönjes, A. Milusev, R. Rieben, R. Sfriso, C. Walz, T. Kirchner, D. Ayares, K. Lampe, U. Schönmann, C. Hagl, E. Wolf, N. Klymiuk, J. M. Abicht, P. Brenner, Pig-to-non-human primate heart transplantation: The final step toward clinical xenotransplantation? J. Heart Lung Transplant. 39, 751–757 (2020).

204. M. Längin, B. Reichart, S. Steen, T. Sjöberg, A. Paskevicius, Q. Liao, G. Qin, M. Mokelke, T. Mayr, J. Radan, L. Issl, I. Buttgereit, J. Ying, A. K. Fresch, A. Panelli, S. Egerer, A. Bähr, B. Kessler, A. Milusev, R. Sfriso, R. Rieben, D. Ayares, P. J. Murray, R. Ellgass, C. Walz, N. Klymiuk, E. Wolf, J. M. Abicht, P. Brenner, Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation. Xenotransplantation 28, e12636 (2021).

205. A. B. Adams, S. C. Kim, G. R. Martens, J. M. Ladowski, J. L. Estrada, L. M. Reyes, C. Breeden, A. Stephenson, D. E. Eckhoff, M. Tector, A. J. Tector, Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann. Surg. 4, 564–573 (2018).

206. T. Lu, B. Yang, R. Wang, C. Qin, Xenotransplantation: Current status in preclinical research. Front. Immunol. 10, –3060 (2019).

207. A. H. Good, D. K. Cooper, A. J. Malcolm, R. M. Ippolito, E. Koren, F. A. Neethling, Y. Ye, N. Zuhdi, L. R. Lamontagne, Identification of carbohydrate structures that bind human antiporcine antibodies: Implications for discordant xenografting in humans. Transplant. Proc. 2, 559–562 (1992).

208. G. Chen, H. Qian, T. Starzl, H. Sun, B. Garcia, X. Wang, Y. Wise, Y. Liu, Y. Xiang, L. Copeman, W. Liu, A. Jevnikar, W. Wall, D. K. C. Cooper, N. Murase, Y. Dai, W. Wang, Y. Xiong, D. J. White, R. Zhong, Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat. Med. 11, 1295–1298 (2005).

209. K.-H. Song, Y.-J. Kang, U.-H. Jin, Y.-I. Park, S.-M. Kim, H.-H. Seong, S. Hwang, B.-S. Yang, G.-S. Im, K.-S. Min, J.-H. Kim, Y.-C. Chang, N.-H. Kim, Y.-C. Lee, C.-H. Kim, Cloning and functional characterization of pig CMP-N-acetylneuraminic acid hydroxylase for the synthesis of N-glycolylneuraminic acid asthe xenoantigenic determinant in pig– human xenotransplantation. Biochem. J. 427, 179–188 (2010).

210. G. Byrne, S. Ahmad-Villiers, Z. Du, C. McGregor, B4GALNT2 and xenotransplantation: A newly appreciated xenogeneic antigen. Xenotransplantation 25, e12394 (2018).

211. Y. Moalic, Y. Blanchard, H. Félix, A. Jestin, Porcine endogenous retrovirus integration sites in the human genome: Features in common with those of murine leukemia virus. J. Virol. 80, 10980–10988 (2006).

212. D. Niu, H.-J. Wei, L. Lin, H. George, T. Wang, I.-H. Lee, H.-Y. Zhao, Y. Wang, Y. Kan, E. Shrock, E. Lesha, G. Wang, Y. Luo, Y. Qing, D. Jiao, H. Zhao, X. Zhou, S. Wang, H. Wei, M. Güell, G. M. Church, L. Yang, Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307 (2017).

213. X.-F. Jiang, T.-L. Qian, D. Chen, H.-W. Lu, P. Xue, X.-W. Yang, L.-H. Zhang, Y.-Z. Hu, D.-W. Zhang, Correction of hyperglycemia in diabetic rats with the use of microencapsulated young market pig islets. Transplant. Proc. 50, 3895–3899 (2018).

214. S. Bertera, M. F. Knoll, C. A. Knoll, D. K. C. Cooper, M. Trucco, R. Bottino, Pig-to-macaque islet xenotransplantation. Methods Mol. Biol. 2110, 289–314 (2020).

215. S. Matsumoto, S. Wynyard, M. Giovannangelo, S. L. Hemdev, A. Abalovich, M. E. Carulla, C. J. Wechsler, Long-term follow-up for the microbiological safety of clinical microencapsulated neonatal porcine islet transplantation. Xenotransplantation 27, e12631 (2020).

216. D. Dufrane, P. Gianello, Pig islet for xenotransplantation in human: Structural and physiological compatibility for human clinical application. Transplant. Rev. 26, 183–188 (2012).

217. D. Bharti, S. Belame Shivakumar, R. Baregundi Subbarao, G.-J. Rho, Research advancements in porcine derived mesenchymal stem cells. Curr. Stem Cell Res. Ther. 11, 78–93 (2016).

218. D. J. Garry, M. G. Garry, Interspecies chimeras and the generation of humanized organs. Circ. Res. 124, 23–25 (2019).

219. J. K. Patterson, X. G. Lei, D. D. Miller, The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp. Biol. Med. 233, 651–664 (2008).

220. P. Sauleau, E. Lapouble, D. Val-Laillet, C.-H. Malbert, The pig model in brain imaging and neurosurgery. Animal 3, 1138–1151 (2009).

221. L. Lossi, L. D’Angelo, P. De Girolamo, A. Merighi, Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Ann. Anat. 204, 11–28 (2016).

222. P. M. Kragh, A. L. Nielsen, J. Li, Y. Du, L. Lin, M. Schmidt, I. Brück Bøgh, I. E. Holm, J. E. Jakobsen, M. G. Johansen, S. Purup, L. Bolund, G. Vajta, A. L. Jørgensen, Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res. 18, 545–558 (2009).

223. J. E. Jakobsen, M. G. Johansen, M. Schmidt, F. Dagnæs-Hansen, K. Dam, A. Gunnarsson, Y. Liu, P. M. Kragh, R. Li, I. E. Holm, H. Callesen, J. G. Mikkelsen, A. L. Nielsen, A. L. Jørgensen, Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res. 22, 709–723 (2013).

224. J. E. Jakobsen, M. G. Johansen, M. Schmidt, Y. Liu, R. Li, H. Callesen, M. Melnikova, M. Habekost, C. Matrone, Y. Bouter, T. A. Bayer, A. L. Nielsen, M. Duthie, P. E. Fraser, I. E. Holm, A. L. Jørgensen, Expression of the Alzheimer’s disease mutations APP695sw and PSEN1M146I in double-transgenic göttingen minipigs. J. Alzheimers Dis. 53, 1617–1630 (2016).

225. N. Klymiuk, L. Mundhenk, K. Kraehe, A. Wuensch, S. Plog, D. Emrich, M. C. Langenmayer, M. Stehr, A. Holzinger, C. Kröner, A. Richter, B. Kessler, M. Kurome, M. Eddicks, H. Nagashima, K. Heinritzi, A. D. Gruber, E. Wolf, Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J. Molec. Med. 90, 597–608 (2012).

226. S. Renner, C. Braun-Reichhart, A. Blutke, N. Herbach, D. Emrich, E. Streckel, A. Wünsch, B. Kessler, M. Kurome, A. Bähr, N. Klymiuk, S. Krebs, O. Puk, H. Nagashima, J. Graw, H. Blum, R. Wanke, E. Wolf, Permanent neonatal diabetes in INSC94Y transgenic pigs. Diabetes 62, 1505–1511 (2013).

227. N. Klymiuk, A. Blutke, A. Graf, S. Krause, K. Burkhardt, A. Wuensch, S. Krebs, B. Kessler, V. Zakhartchenko, M. Kurome, E. Kemter, H. Nagashima, B. Schoser, N. Herbach, H. Blum, R. Wanke, A. Aartsma-Rus, C. Thirion, H. Lochmüller, M. C. Walter, E. Wolf, Dystrophindeficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum. Mol. Genet. 22, 4368–4382 (2013).

228. K. Lee, D.-N. Kwon, T. Ezashi, Y.-J. Choi, C. Park, A. C. Ericsson, A. N. Brown, M. S. Samuel, K.-W. Park, E. M. Walters, D. Y. Kim, J.-H. Kim, C. L. Franklin, C. N. Murphy, R. M. Roberts, R. S. Prather, J.-H. Kim, Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc. Natl. Acad. Sci. U.S.A. 111, 7260–7265 (2014).

229. J. Huang, X. Guo, N. Fan, J. Song, B. Zhao, Z. Ouyang, Z. Liu, Y. Zhao, Q. Yan, X. Yi, A. Schambach, J. Frampton, M. A. Esteban, D. Yang, H. Yang, L. Lai, RAG1/2 knockout pigs with severe combined immunodeficiency. J. Immunol. 193, 1496–1503 (2014).

230. L. Yang, M. Güell, D. Niu, H. George, E. Lesha, D. Grishin, J. Aach, E. Shrock, W. Xu, J. Poci, R. Cortazio, R. A. Wilkinson, J. A. Fishman, G. Church, Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015).

231. K. Wang, Q. Jin, D. Ruan, Y. Yang, Q. Liu, H. Wu, Z. Zhou, Z. Ouyang, Z. Liu, Y. Zhao, B. Zhao, Q. Zhang, J. Peng, C. Lai, N. Fan, Y. Liang, T. Lan, N. Li, X. Wang, X. Wang, Y. Fan, P. A. Doevendans, J. P. G. Sluijter, P. Liu, X. Li, L. Lai, Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res. 27, 2061–2071 (2017).

232. A. Saalfrank, K.-P. Janssen, M. Ravon, K. Flisikowski, S. Eser, K. Steiger, T. Flisikowska, P. Müller-Fliedner, É. Schulze, C. Brönner, A. Gnann, E. Kappe, B. Böhm, B. Schade, U. Certa, D. Saur, I. Esposito, A. Kind, A. Schnieke, A porcine model of osteosarcoma. Oncogenesis 5, e210 (2016).

233. J. W. Ross, J. P. Fernandez de Castro, J. Zhao, M. Samuel, E. Walters, C. Rios, P. Bray-Ward, B. W. Jones, R. E. Marc, W. Wang, L. Zhou, J. M. Noel, M. A. McCall, P. J. DeMarco, R. S. Prather, H. J. Kaplan, Generation of an inbred miniature pig model of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 53, 501–507 (2012).

234. O. Bikou, K. Ishikawa, K. M. Fish, I. Zarragoikoetxea, R. J. Hajjar, J. Aguero, Modeling pulmonary hypertension: A pig model of postcapillary pulmonary hypertension. Methods Mol. Biol. 29, 367–383 (2018).

235. K. Eun, S.-U. Hwang, H.-M. Jeon, S.-H. Hyun, H. Kim, Comparative analysis of human, mouse, and pig glial fibrillary acidic protein gene structures. Anim. Biotechnol. 27, 126–132 (2016).

转载须知【原创文章】BioArtMED原创文章,欢迎个人转发分享,未经允许禁止转载,所刊登的所有作品的著作权均为BioArtMED所拥有。BioArtMED保留所有法定权利,违者必究。

发布于 2022-02-09 23:32

医疗

人体器官

科研

赞同 101 条评论

分享

喜欢收藏申请转载